ارائه مدل حاکمیت هوش مصنوعی برای حکمرانی دولت در جمهوری اسلامی ایران

نوع مقاله : سیاست گذاری و حکمرانی سیاسی

نویسندگان

1 دکتری مدیریت بازرگانی، دانشگاه تهران، تهران، ایران

2 گروه علوم سیاسی، دانشکده عقیدتی سیاسی، دانشگاه علوم انتظامی امین

چکیده

هدف اصلی تحقیق، توسعه یک چارچوب مفهومی و عملیاتی برای بهره‌برداری بهینه از فناوری‌های هوش مصنوعی در نظام حکمرانی ایران است. روش تحقیق این مطالعه، به صورت فراتحلیل (Meta-analysis) انجام شده است که با ترکیب و تحلیل نتایج پژوهش‌های پیشین، به استخراج الگوها و شواهد قابل‌اتکا پرداخته است.
در این روش، با استفاده از روش فراتحلیل، مطالعات پیشین در مورد حاکمیت هوش مصنوعی و حکمرانی دولتی از سال 2000 تا 2024 بررسی شده‌اند. داده‌ها از پایگاه‌های معتبر با استفاده از کلمات کلیدی مرتبط جمع‌آوری شدند، و پس از یک فرآیند غربالگری چند مرحله‌ای، 127 مقاله برای تحلیل نهایی انتخاب شدند. تحلیل داده‌ها با استفاده از نرم‌افزار متلب و تکنیک‌های تجزیه و تحلیل خوشه‌ای و فراوانی سند انجام شد.یافته‌های تحقیق نشان‌دهنده این است که شش خوشه کلیدی در حاکمیت هوش مصنوعی برای حکمرانی دولت مدرن ایران شناسایی شدند: اصول پایه حاکمیتی، فناوری‌های پیشرفته، مشارکت شهروندی، امنیت و دفاع، مدیریت و بهبود خدمات دولتی، و مسائل اخلاقی و حقوقی. یافته‌ها نشان دادند که استفاده مؤثر از هوش مصنوعی می‌تواند به افزایش کارایی، شفافیت، و پاسخگویی در سطوح مختلف حکمرانی کمک کند. تحلیل‌ها همچنین بر ضرورت تعریف چارچوب‌های شفاف و اخلاقی تأکید دارند تا اعتماد عمومی افزایش یابد و نارضایتی‌های احتمالی کاهش پیدا کند..
نتیجه‌گیری این مطالعه نشان می‌دهد که استقرار حاکمیت هوش مصنوعی می‌تواند ابعاد متعددی از حکمرانی دولتی را در ایران بهبود بخشد. با تحلیل دقیق شش خوشه کلیدی، مشخص شد که تقویت اصول حاکمیتی مانند شفافیت و اخلاق، به افزایش اعتماد عمومی و کاهش نارضایتی‌های اجتماعی کمک شایانی می‌کند. همچنین، اجرای سیستم‌های نظارتی قوی و افزایش امنیت داده‌ها نقش حیاتی در حفاظت از حریم خصوصی شهروندان داشته و به پیشبرد اهداف توسعه پایدار منجر می‌شود. این یافته‌ها اهمیت سرمایه‌گذاری در فناوری‌های نوین و توسعه قوانین متناسب با پیشرفت‌های فناوری را برجسته می‌کند، ضمن آنکه تأکید بر آموزش و آگاهی‌بخشی عمومی به عنوان یک اولویت ضروری مطرح می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing an Artificial Intelligence Governance Model for State Administration in the Islamic Republic of Iran

نویسندگان [English]

  • Mohammad Amin Torabi 1
  • Hadis Eghbal 2
1 Ph.D. in Business Administration, University of Tehran, Tehran, Iran
2 Police University
چکیده [English]

The main goal of the research is to develop a conceptual and operational framework for the optimal use of artificial intelligence technologies in Iran's governance system. The research method of this study is meta-analysis, which combines and analyzes the results of previous studies to extract patterns and reliable evidence.
In this method, using the meta-analysis method, previous studies on artificial intelligence governance and government governance from 2000 to 2024 have been reviewed. Data were collected from valid databases using relevant keywords, and after a multi-step screening process, 127 articles were selected for final analysis. Data analysis was done using MATLAB software and cluster analysis and document frequency techniques. The research findings indicate that six key clusters were identified in artificial intelligence governance for the governance of the modern government of Iran: basic principles of governance, advanced technologies, citizen participation, security and defense, management and improvement of public services, and ethical and legal issues. The findings showed that the effective use of artificial intelligence can help increase efficiency, transparency, and accountability at different levels of governance. The analyzes also emphasize the necessity of defining transparent and ethical frameworks in order to increase public trust and reduce possible dissatisfaction.
The conclusion of this study shows that the establishment of artificial intelligence governance can improve several aspects of government governance in Iran. With a detailed analysis of six key clusters, it was found that strengthening governance principles such as transparency and ethics helps to increase public trust and reduce social dissatisfaction. Also, the implementation of strong monitoring systems and increasing data security play a vital role in protecting the privacy of citizens and lead to the advancement of sustainable development goals. These findings highlight the importance of investing in new technologies and developing laws appropriate to technological advances, while emphasizing public education and awareness as a necessary priority.

کلیدواژه‌ها [English]

  • Artificial intelligence governance
  • government governance
  • Smart government

Smiley face

Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE Access.
Attard-Frost, B., Brandusescu, A., & Lyons, K. (2024). The governance of artificial intelligence in Canada: Findings and opportunities from a review of 84 AI governance initiatives. Government Information Quarterly, 41(2), 101929.
Bengio, Y. (2024). Government interventions to avert future catastrophic AI risks. Harvard Data Science Review(Special Issue 5).
Bokhari, S. A. A., & Myeong, S. (2023). The influence of artificial intelligence on e-Governance and cybersecurity in smart cities: A stakeholder’s perspective. IEEE Access.
Bullock, J. B., Chen, Y.-C., Himmelreich, J., Hudson, V. M., Korinek, A., Young, M. M., & Zhang, B. (2024). The Oxford handbook of AI governance. Oxford University Press.
Campbell, R. W. (2023). Artificial intelligence in the courtroom: The delivery of justice in the age of machine learning. Revista Forumul Judecatorilor, 15.
Caruso, S., Bruccoleri, M., Pietrosi, A., & Scaccianoce, A. (2023). Artificial intelligence to counteract “KPI overload” in business process monitoring: the case of anti-corruption in public organizations. Business Process Management Journal, 29(4), 1227-1248.
Chen, Y.-C., Ahn, M. J., & Wang, Y.-F. (2023). Artificial intelligence and public values: value impacts and governance in the public sector. Sustainability, 15(6), 4796.
Couture, V., Roy, M.-C., Dez, E., Laperle, S., & Bélisle-Pipon, J.-C. (2023). Ethical implications of artificial intelligence in population health and the public’s role in its governance: perspectives from a citizen and expert panel. Journal of Medical Internet Research, 25, e44357.
Dorren, L. (2024). Locating the modernist state. On whether or not modernist principles govern contemporary policy practice. Administrative Theory & Praxis, 46(1), 76-94.
Erman, E., & Furendal, M. (2024). Artificial intelligence and the political legitimacy of global governance. Political Studies, 72(2), 421-441.
Elhami taleshmikaeil, P., kord karimie, A., & urujii, H. (2024). Governments resort to artificial intelligence for national security and threaten human rights. State Studies of Contemporary Iran, 10(1), 39-65.(In Persian)
Fabregue, B. (2024). Original Research Article Artificial intelligence governance in smart cities: A European regulatory perspective. J. Auton. Intell, 7.
Garcia, D. (2024). The AI Military Race: Common Good Governance in the Age of Artificial Intelligence. Oxford University Press.
Goos, M., & Savona, M. (2024). The governance of artificial intelligence: Harnessing opportunities and mitigating challenges. In (Vol. 53, pp. 104928): Elsevier.
Hadley, E., Blatecky, A., & Comfort, M. (2024). Investigating Algorithm Review Boards for Organizational Responsible Artificial Intelligence Governance. arXiv preprint arXiv:2402.01691.
Hine, E., & Floridi, L. (2024). Artificial intelligence with American values and Chinese characteristics: a comparative analysis of American and Chinese governmental AI policies. AI & SOCIETY, 39(1), 257-278.
Iqbal, Q., Khan, D., & Salis, M. (2024). Navigating the Ethical and Legal Landscape of Artificial Intelligence in Global Governance: A Comprehensive Analysis. Journal of Asian Development Studies, 13(2), 945-954.
 Jahangiri, S., & Mohammadi, F. (2022). Explain the Role of Political Stability in the Theory of Good Governance. State Studies of Contemporary Iran, 7(4), 124-142. (In Persian)
Kamyab, H., Khademi, T., Chelliapan, S., SaberiKamarposhti, M., Rezania, S., Yusuf, M., Farajnezhad, M., Abbas, M., Jeon, B. H., & Ahn, Y. (2023). The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering, 101566.
Kashyap, R., Samuel, Y., Friedman, L. W., & Samuel, J. (2024). Artificial intelligence education & governance-human enhancive, culturally sensitive and personally adaptive HAI. In (Vol. 7, pp. 1443386): Frontiers Media SA.
Khan, N., Okoli, C. N., Ekpin, V., Attai, K., Chukwudi, N., Sabi, H., Akwaowo, C., Osuji, J., Benavente, L., & Uzoka, F.-M. (2023). Adoption and utilization of medical decision support systems in the diagnosis of febrile diseases: a systematic literature review. Expert Systems with Applications, 220, 119638.
Lawson, G., & Zarakol, A. (2023). the Modern State. The Interwar World, 153.
Noorizadeh, M., Dara, J., & noori mombeyni, Z. (2023). Brain drain and the quality of governance with an emphasis on the phenomenon of politicization in Iran. State Studies of Contemporary Iran, 9(2), 93-118. (In Persian)
Olsen, H. P., Hildebrandt, T. T., Wiesener, C., Larsen, M. S., & Flügge, A. W. A. (2024). The Right to Transparency in Public Governance: Freedom of Information and the Use of Artificial Intelligence by Public Agencies. Digital Government: Research and Practice, 5(1), 1-15.
Peixoto, T. C., Canuto, O., & Jordan, L. (2024). AI and the Future of Government: Unexpected Effects and Critical Challenges. Policy Center For The New South.
Ramiro Troitiño, D. (2023). Mapping E-governance in the EU. In Digital development of the European Union: An interdisciplinary perspective (pp. 303-317). Springer.
rajabifarjad, H., & Torabi, M. A. (2022). Meta-Synthesis of a Painful-Enjoyable Marketing Model Using the Prisma Approach. Journal of Business Management Perspective, 21(51), 13-42.
Saba, C. S., & Ngepah, N. (2024). The impact of artificial intelligence (AI) on employment and economic growth in BRICS: Does the moderating role of governance Matter? Research in Globalization, 8, 100213.
Samuel, P., Reshmy, A., Rajesh, S., Kanipriya, M., & Karthika, R. (2023). AI-based big data algorithms and machine learning techniques for managing data in E-governance. In AI, IoT, and Blockchain breakthroughs in E-governance (pp. 19-35). IGI Global.
Sastry, G., Heim, L., Belfield, H., Anderljung, M., Brundage, M., Hazell, J., O'Keefe, C., Hadfield, G. K., Ngo, R., & Pilz, K. (2024). Computing Power and the Governance of Artificial Intelligence. arXiv preprint arXiv:2402.08797.
Stewart, M. (2024). Modern forms of government: a comparative study. Taylor & Francis.
Straub, V. J., Hashem, Y., Bright, J., Bhagwanani, S., Morgan, D., Francis, J., Esnaashari, S., & Margetts, H. (2024). AI for bureaucratic productivity: Measuring the potential of AI to help automate 143 million UK government transactions. arXiv preprint arXiv:2403.14712.
Ulaşan, F. (2023). The Possibility of Using Artificial Intelligence For Turkish Administrative Jurisdiction. Ankara: İKSAD Publishing House.
Valle-Cruz, D., García-Contreras, R., & Gil-Garcia, J. R. (2024). Exploring the negative impacts of artificial intelligence in government: the dark side of intelligent algorithms and cognitive machines. International Review of Administrative Sciences, 90(2), 353-368.
Varma, A., Dawkins, C., & Chaudhuri, K. (2023). Artificial intelligence and people management: A critical assessment through the ethical lens. Human Resource Management Review, 33(1), 100923.